Two New Diterpene Acetylxylosides from Aster veitchianus

Er Wei LI, Kun GAO*, Zhong Jian JIA*

College of Chemistry and Chemical Engineering, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new acetylxylosides, *ent*-manool-13-O- β -D-2'-acetylxylopyranoside (1) and *ent*-manool-13-O- β -D-2', 4'-diacetylxylopyranoside (2) were isolated from *Aster veitchianus*. Their structures were elucidated by spectroscopic methods.

Keywords: Aster veitchianus, Compositae, diterpene, xylosides.

The chemical constituents for *Aster veitchianus* Hutch. *et* Drumm. have not yet been reported so far. In this paper, two new labdane acetylxylosides, ent-manool-13-O- β -D-2'-acetylxylopyranoside (1) and ent-manool-13-O- β -D-2', 4'-diacetylxylopyranoside (2) were isolated from the whole plants of *Aster veitchianus*. Their structures were deduced by spectroscopic methods.

Compound 1, viscous syrup, $[\alpha]_D^{20}$ -9.0 (c 12.1, CHCl₃). HRESI-MS showed [M $+NH_4$] at m/z 482.3479 (calcd. for [C₂₇H₄₄O₆ + NH₄] 482.3476), indicating a molecular formula of C₂₇H₄₄O₆, which was supported by ¹³C-NMR and DEPT spectral data (**Table 1**). Meanwhile in the low mass region of MS spectrum a peak at m/z 273 was corresponded to the loss of an acetyl pentose ($C_7H_{11}O_6$). The ¹³C-NMR signals at δ 96.12, 73.34, 74.62, 69.89, 64.55 were very similar to those of the D-xylose moiety of the known diterpene xyloside^{1,2}. Furthermore, the signals at δ_C 170.43, 21.61, δ_H 2.10 indicated one of the hydroxyls of D-xylose moiety was acetylated. In ¹H-NMR four methyl groups appeared at δ 0.65, 0.79, 0.86 and 1.30 (s, each 3 H), characterisitic methylene signals appeared at δ 4.49, 4.78 (brs, each 1 H) and a vinilic group appeared at δ 5.18, 5.25 and δ 5.72 (dd, each 1 H), indicating that 1 was *ent*-manool with a acetyl D-xylose. The ¹H-¹H COSY spectrum of 1 showed the correlations of H-5a' (3.19, dd, 1 H) /H-5b' (3.93, dd, 1 H) and H-4' (3.65, m, 1 H); H-3' (3.48, t, 1 H) / H-4' (3.65, m, 1 H) and H-2' (4.70, dd, 1 H); H-2' (4.70, dd, 1 H) / H-1' (4.47, d, 1 H). Compared with the known diterpene xyloside¹, the chemical shift of the H-2' was downfield from δ 3.34 to δ 4.70 and in the HMBC experiment there was the cross peak of δ_C 170.43 / $\delta_{H-2'}$ 4.70, which indicated the acetyl group located at C-2'. Thus, compound 1 was determined as ent-manool-13-O-β-D-2'-acetylxylopyranoside. The structure of **1** was confirmed by the 1 H- and ¹³C-NMR spectral data, and the HMOC and HMBC experiments.

^{*} E-mail: miaozm@lzu.edu.cn, jiazj@lzu.edu.cn

426 Er Wei LI et al.

Table 1 1 H-NMR (400 MHz), 13 C-NMR (100 MHz) and DEPT data of compounds 1 and 2 (CDCl₃, ppm)

Н	1	2	C	1	2	DEPT
1	1.67~1.74 m	1.67~1.79 m	1	38.90	38.94	CH ₂
2	1.36~1.54 m	1.45~1.58 m	2	19.27	19.31	CH_2
3	1.17~1.31 m	1.24~1.36 m	3	42.05	42.08	CH_2
-			4	33.45	33.50	C
5	1.00~1.08 m	1.01~1.08 m	5	55.40	55.45	CH
6	1.17~1.31 m	1.24~1.36 m	6	24.29	24.34	CH_2
7α	2.35 dt (9.6, 3.2)	2.36 dt (9.6, 3.2)	7	38.20	38.23	CH_2
7β	1.93 dt (9.6, 3.2)	1.94 dt (9.6, 3.2)				
-			8	148.21	148.37	C
9	1.36~1.54 m	1.45~1.58 m	9	57.07	57.15	CH
-			10	39.68	39.75	C
11	1.00~1.08 m	1.01~1.08 m	11	17.40	17.44	CH_2
12	1.67~1.74 m	1.67~1.79 m	12	41.04	40.91	CH_2
_			13	80.84	81.31	C
14	5.72 dd (10.5, 17.4)	5.75 dd (10.8, 17.4)	14	141.71	141.50	CH
15a	5.18 dd (1, 17.4)	5.20 dd (1, 17.4)	15	116.02	116.24	CH_2
15b	5.25 dd (1, 10.5)	5.26 dd (1, 10.8)				
16	1.30 s	1.34 s	16	22.88	22.45	CH_3
17a	4.49 br s	4.46 br s	17	106.54	106.44	CH_2
17b	4.78 br s	4.76 br s				
18	0.86 s	0.86 s	18	33.51	33.55	CH_3
19	0.79 s	0.79 s	19	20.98	21.65	CH_3
20	0.65 s	0.66 s	20	14.36	14.41	CH_3
Xyl			Xyl			
1′	4.47 d (5.4)	4.70 d (5.2)	1′	96.12	94.79	CH
2'	4.70 dd (5.4, 8.1)	4.72 dd (6.8, 5.2)	2'	73.34	71.90	CH
3′	3.48 t (8.1)	3.77 br t (6.8)	3'	74.62	69.95	CH
4′	3.65 m	4.81 m	4'	69.89	70.94	CH
5a'	3.19 dd (6.4, 11.7)	3.40 dd (6.4, 12.4)	5′	64.55	60.20	CH_2
5b'	3.93 dd (4.8, 11.7)	4.15 dd (4.4, 12.4)				
Ac			Ac			
			1′	170.43	170.10	C
					170.40	C
2'	2.10 s	2.10 s	2'	21.61	20.91	CH_3
		2.11 s			20.91	CH ₃

Compound **2**, viscous syrup, $[\alpha]_D^{20}$ -9.5 (c 5.8, CHCl₃). HRESI-MS showed [M +NH₄]⁺ at m/z 524.3584 (calcd. for $[C_{29}H_{46}O_7 + NH_4]$ 524.3582), indicating a molecular formula of $C_{29}H_{46}O_7$, which was confirmed by its ¹³C-NMR and DEPT spectra data (**Table 1**), and a fragment peak at m/z 273, corresponding to the loss of a diacetyl pentose $(C_9H_{13}O_7)$ unit. The ¹H-NMR spectral data of **2** were very similar to those of **1** (**Table 1**), but the chemical shift of the H-4' was downfield shift from δ 3.65 in **1** to δ 4.81 in **2** and there were cross peaks of δ_C 170.10 / δ_{H-2} 4.72 and δ_C 170.40 / δ_{H-4} 4.81 in the HMBC experiment, which indicated that there were two acetyl groups in **2** and located at C-2' and C-4' respectively. Therefore, compound **2** was *ent*-manool-13-O- β -D-2', 4'-diacetylxy-lopyranoside. The result was further confirmed by the analysis of the ¹H-¹H COSY, HMQC spectra of **2**.

$$R_1O$$
 R_2O
 R_3O
 R_3O

Acknowledgments

This work was supported by the NNSFC (No. 20021001 QT Program and No.29972017).

References

- A. Urzu, E. Tojo, J. Soto, *Phytochemistry*, **1995**, *38*(2), 555.A. Urzua, L. Mendoza, *Phytochemistry*, **1995**, *39*(6), 1489.

Received 17 April, 2003